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Bisphenol S modulates concentrations of bisphenol A and oestradiol in female
and male mice
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ABSTRACT

1. Concern over endocrine-disrupting actions of bisphenol A (BPA) has prompted some manu-
facturers to remove it from consumer products. Among the chemical replacements in “BPA-
free” products are other bisphenol analogues, such as bisphenol S (BPS). Given evidence
that BPA and BPS possess similar oestrogenic activity, their capacity to interact and disrupt
oestrogen homeostasis should be examined.

2. We investigated whether BPS can modulate concentrations of 14C-BPA, exogenous 3H-
oestradiol (E2), or natural E2. CF-1 mice were each given a single subcutaneous injection of
oil containing 0 (vehicle), 1, 3, or 9mg BPS, then given a dietary supplement containing
either 50 lg/kg 14C-BPA or 5 lCi (14.5 ng) 3H-E2. BPS treatment elevated 14C-BPA concentra-
tions in blood serum and certain reproductive organs of both sexes, but reduced 3H-E2 con-
centrations in blood serum of females. In another experiment, natural E2 was measured in
urine 2–12 h after injection of 0 (vehicle), 1, or 3mg BPS. BPS reduced E2 concentrations at
10 h after injection in both sexes.

3. These results are consistent with evidence that BPS and BPA compete for access to meta-
bolic enzymes, and that BPS can disrupt oestrogen homeostasis. These findings demonstrate
the importance of considering multiple toxicants when determining regulatory expos-
ure limits.
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Introduction

Bisphenols are used in the production of polycarbonate plas-
tics that are found in many household, commercial, and
medical products, including food packaging, thermal receipt
paper, dental sealants, and electronics (Vandenberg et al.,
2007). The ubiquitous presence of bisphenol A (BPA)
(Vandenberg et al., 2010) and its actions as an endocrine-dis-
rupting chemical (EDC) (Rochester, 2013; Seachrist et al.,
2016; Ziv-Gal & Flaws, 2016) have led to increasing concerns
by researchers, regulators, and the public. This has prompted
manufacturers to remove BPA from products and, in some
cases, to use other bisphenol analogues. One such replace-
ment is bisphenol S (BPS), which is found in “BPA-free” ther-
mal paper (Liao et al., 2012c), personal care products (Liao &
Kannan, 2014), and food (Liao & Kannan, 2013). BPS has been
detected in surface water (Yamazaki et al., 2015), sediment
(Yang et al., 2014), and indoor house dust (Liao et al., 2012b).
BPS has also been measured in human urine (Liao et al.,
2012a; Thayer et al., 2016) and blood serum (Thayer et al.,
2016) at concentrations and detection frequencies that are
comparable to those of BPA.

Recent evidence from our laboratory has shown that
exposure to common EDCs can elevate concentrations of
BPA in tissues and blood serum (Borman et al., 2017; Pollock,
2017; Pollock et al., 2014, 2017a,b, 2018). In these studies,
mice were administered a single dose of one EDC then given
50 lg/kg 14C-BPA, which is the oral reference dose set by the
EPA (U.S. EPA, 1988). Administration of 0.6–18mg triclosan
(Pollock et al., 2014), 1–27mg tetrabromobisphenol A
(TBBPA) (Pollock et al., 2017a), 1–9mg butyl paraben (BP)
(Pollock et al., 2017b), 9mg propyl paraben (PP) (Pollock
et al., 2017b), or 3–18mg diethylhexyl phthalate (DEHP)
(Borman et al., 2017) significantly elevated BPA concentra-
tions in tissues and blood serum of female and/or male mice.
Concurrent administration can have effects at doses below
those required for the individual EDCs to do so (Pollock
et al., 2017a); a mixture of 0.1mg each of triclosan, TBBPA,
BP, PP, and DEHP significantly elevated BPA concentrations
in tissues and blood serum of female mice (Pollock et al.,
2018). Some of these EDCs also modulate concentrations of
oestradiol (E2), the most potent natural oestrogen. Elevated
urinary E2 concentrations were observed in mice
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administered a single dose of 1–2mg triclosan (Pollock et al.,
2016), 1mg TBBPA (Pollock et al., 2017a), or 3mg BP (Pollock
et al., 2017b). Such actions could be pertinent to human
health given that elevated oestrogen levels are implicated in
hormone-dependent cancers (Million Women Study
Collaborators, 2003, 2005, 2007) and can be damaging to
female fertility (deCatanzaro, 2015; Gidley-Baird et al., 1986;
Ma et al., 2003; Thorpe et al., 2013).

These findings are consistent with evidence that EDCs
compete with each other and natural oestrogens for access
to metabolic enzymes. Various enzymes are involved in EDC
and natural oestrogen metabolism, including cytochrome
p450 (CYP), hydroxysteroid dehydrogenase (HSD), sulpho-
transferase (SULT), and UDP-glucuronosyltransferase (UGT)
(Dumas & Diorio, 2011). BPA is an established EDC with oes-
trogenic activity (Rochester, 2013; Seachrist et al., 2016; Ziv-
Gal & Flaws, 2016), and several studies have shown that BPS
exhibits similar oestrogenic activity (Catanese & Vandenberg,
2017; Chen et al., 2016; Eladak et al., 2015; Rochester &
Bolden, 2015; �Zalmanov�a et al., 2016). Given the co-occur-
rence of BPA and BPS in certain products and metabolically
within individuals (Russo et al., 2017; Thayer et al., 2016), it is
critical to assess their capacity to interact with each other
and disrupt natural oestrogen homeostasis.

The present study was designed to assess in vivo inter-
action between BPS and BPA, and to assess the impacts of
BPS on endogenous and exogenous E2 concentrations. We
employed the same paradigm as used to study the EDCs
mentioned above to allow direct comparison of the potency
of BPS and these other EDCs. Consistent with evidence of
shared detoxification pathways for BPS and BPA (Kurebayashi
et al., 2010; Skledar et al., 2016), we hypothesised that BPS
would elevate concentrations of BPA by competing for access
to metabolic enzymes. We tested this hypothesis by measur-
ing the impact of BPS injection on concentrations of dietary
14C-BPA in female and male mice. We also hypothesised that
BPS would modulate concentrations of endogenous and
exogenous E2 by competing for access to metabolic enzymes
and/or receptors. We tested this hypothesis by measuring
the impact of BPS injection on concentrations of either diet-
ary 3H-E2 or natural urinary E2.

Materials and methods

Animals and housing

Female and male CF-1 mice aged 3–4months were obtained
from Charles River (St. Constant, QC). We used females in
dioestrus, as this is an easily detected point in the cycle
where oestrogen levels are relatively stable (Miller &
Takahashi, 2014). Females were identified from a colony of
mice by vaginal cytology using published procedures (Byers
et al., 2012). The colony was maintained at 21 �C with a
reversed 14 h light:10 h darkness cycle. Animals were housed
in polypropylene cages measuring 28� 16� 11 (l�w�h)
cm with ad libitum access to food (8640 Teklad Certified
Rodent Chow; Harlan Teklad, Madison, WI) and water, except
where otherwise stated. All procedures adhered to the stand-
ards of the Canadian Council on Animal Care and were

approved by the Animal Research Ethics Board of
McMaster University.

Chemicals and materials

BPS (CAS 80-09-1, �98% purity), E2 (CAS 50-28-2, �98% pur-
ity), and creatinine standards were obtained from Sigma-
Aldrich, St. Louis, MO. 14C-BPA ([ring-[14C](U)]-BPA, in ethanol,
0.1mCi/ml, 50mCi/mmol) was obtained from Moravek
Biochemicals, Brea, CA. 3H-E2 ([2,4,6,7-[3H](N)]-E2, in ethanol,
1.0mCi/ml, 94 Ci/mmol), SOLVABLE solubilisation cocktail,
Ultima Gold scintillation cocktail, and 8ml midi-vial scintilla-
tion vials were obtained from PerkinElmer, Waltham, MA. E2
antibodies and HRP conjugates were obtained from the
Department of Population Health and Reproduction at the
University of California, Davis, CA.

Experimental design and dosing

This research followed previously published procedures
(Borman et al., 2017; Pollock et al., 2014, 2016, 2017a,b,
2018). Mice were weighed, individually housed, and each
given a dietary supplement of 1 g peanut butter. About
14–16 h later, at the onset of darkness on the following day
(8:00 AM), animals were randomly assigned to treatment con-
ditions involving a single subcutaneous (sc) injection.
Dioestrous females and males received 0 (vehicle), 1, 3, or
9mg BPS in 0.1ml peanut oil (n¼ 7 per dose). Table 1 pro-
vides animal weights in g and BPS doses in mg/kg for each
treatment condition. At 30min after injection, each animal
was given a 0.2 g peanut butter dietary supplement contain-
ing 50 mg/kg 14C-BPA in Experiment 1 or 5 mCi 3H-E2 (equiva-
lent to 14.5 ng E2) in Experiment 2. Food, water, and
bedding were removed to prevent contamination of the

Table 1. Mean (± SD) animal weights in g and BPS doses in mg/kg for each
treatment condition.

n Animal weights (g) BPS dose (mg) Dose (mg/kg)

Experiment 1
Females 7 29.2 ± 2.3 Vehicle 0.0 ± 0.0

7 27.4 ± 2.3 1 36.7 ± 3.0
7 26.3 ± 1.9 3 114.6 ± 8.1
7 27.6 ± 3.0 9 330.0 ± 36.6

Males 7 36.5 ± 1.7 Vehicle 0.0 ± 0.0
7 36.6 ± 2.6 1 27.4 ± 2.0
7 37.0 ± 2.8 3 81.4 ± 5.9
7 36.6 ± 3.2 9 247.3 ± 21.9

Experiment 2
Females 7 34.4 ± 2.2 Vehicle 0.0 ± 0.0

7 36.3 ± 3.0 1 27.7 ± 2.3
7 38.4 ± 3.1 3 78.5 ± 6.0
7 35.8 ± 2.6 9 252.7 ± 18.3

Males 7 43.9 ± 5.7 Vehicle 0.0 ± 0.0
7 40.7 ± 8.0 1 25.4 ± 4.6
7 40.1 ± 6.9 3 76.8 ± 13.5
7 41.5 ± 4.0 9 218.9 ± 23.4

Experiment 3
Females 10 38.3 ± 3.5 Vehicle 0.0 ± 0.0

10 39.8 ± 2.9 1 25.2 ± 1.8
10 37.9 ± 3.7 3 79.8 ± 7.6

Males 10 43.5 ± 4.4 Vehicle 0.0 ± 0.0
10 44.9 ± 4.2 1 22.5 ± 2.1
10 46.5 ± 3.7 3 65.0 ± 5.2

n¼ number of animals.
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14C-BPA or 3H-E2 treatment. At 1 h after 14C-BPA or 3H-E2
administration, each animal was anaesthetised with isoflurane
and blood was collected via cardiac puncture. Each animal
was perfused with 20ml phosphate-buffered saline (PBS) and
tissues were collected in pre-weighed scintillation vials.
Tissue samples taken included the heart, lung, superficial
adductor muscle from the hind leg, abdominal adipose, liver,
and a cross-section of the kidney encompassing both the
medulla and cortex. Female reproductive tissues taken
included the whole uterus and both ovaries. Male reproduct-
ive tissues were one testis, one epididymis, one vesicular-
coagulating (VC) gland, and one preputial gland. Vials were
re-weighed following tissue collection to determine the sam-
ple wet mass.

In Experiment 3, mice were weighed and individually placed
in a Plexiglas apparatus measuring 21� 15� 13 (l�w� h) cm
with a wire-mesh grid floor raised approximately 1 cm above a
Teflon-coated stainless-steel surface covered with wax paper.
Animals acclimated to the novel cages for 3days prior to the
start of the experiment. At the onset of darkness on the fourth
day, dioestrous females and males were injected sc with 0
(vehicle), 1, or 3mg BPS in 0.1ml peanut oil (n¼ 10 per dose).
Urine was collected non-invasively at 2, 4, 6, 8, 10, and 12h
post-injection. All urine samples were placed into labelled vials
and frozen at �20 �C at the time of collection.

We administered 14C-BPA in a dietary supplement to
mimic ingestion of BPA from food, beverages, and indoor
dust, which accounts for approximately 85–95% of total
exposure in adults (EFSA, 2015). We also administered 3H-E2
in a dietary supplement to compare findings with those of
14C-BPA, and to resemble human oestrogen supplementation
(van den Heuvel et al., 2005). We followed an effective para-
digm used in previous studies (Borman et al., 2017; Pollock
et al., 2014, 2016, 2017a,b, 2018) for other parameters,
including BPS administration via sc injection, the 30-min
latency between BPS and 14C-BPA or 3H-E2 administration,
and the 1-h latency between 14C-BPA or 3H-E2 administration
and tissue collection. Maintaining identical parameters across
studies permits comparison of the impacts of BPS on concen-
trations of BPA with those previously shown for triclosan
(Pollock et al., 2014), TBBPA (Pollock et al., 2017a), parabens
(Pollock et al., 2017b), and DEHP (Borman et al., 2017).

Blood and tissue processing for liquid
scintillation counting

Blood and tissue samples were processed for liquid scintilla-
tion counting following previously published procedures
(deCatanzaro et al., 2014; deCatanzaro & Pollock, 2016;
Greville et al., 2017). Blood samples were centrifuged at
1500g for 10min and 10ml serum was added to a scintillation
vial containing 5ml Ultima Gold. Tissue samples were solubi-
lised by adding 1ml SOLVABLE to each vial and placing vials
in a 50 �C water bath for 18h until completely dissolved.
Following the addition of 5ml Ultima Gold, vials were agi-
tated to promote mixing of the sample and scintillation cock-
tail. Each vial was stored in the darkness chamber of a TriCarb
2910 TR Liquid Scintillation Analyzer (PerkinElmer, Waltham,

MA) for 5min to eliminate noise in the form of heat and lumi-
nescence. Radioactivity was then measured for 5min per vial.
The amount of radioactivity per sample, in disintegrations per
minute (dpm), was automatically calculated via Quanta-Smart
software (PerkinElmer, Waltham, MA) by subtracting back-
ground radiation, which is continually monitored by the scin-
tillation counter. Frequent cleaning and monitoring of all
work surfaces and equipment ensured that contamination of
samples did not occur. The final dpm measures were normal-
ised to the weight of the sample wet mass and reported as
equivalent ng BPA/g tissue or ng BPA/ml serum.

Measurement of urinary E2

Full procedures and validations for enzyme immunoassays
for mouse urine were previously reported (Muir et al., 2001).
Cross-reactivities for anti-E2 are E2 100%, oestrone 3.3%, pro-
gesterone 0.8%, testosterone 1.0%, androstenedione 1.0%,
and all other measured steroids<0.1%. Assay precision was
determined by interplate and intraplate coefficients of vari-
ation (CV) using pooled urine samples calibrated to span the
range of physiological E2 concentrations. Interplate CV was
6.1% and 9.0% for urine samples calibrated to bind at 30%
and 70%, respectively. Intraplate CV was 8.7% for 40 aliquots
of a urine sample calibrated to bind at 50%. Urinary E2 levels
were considered with and without adjustment for urinary
creatinine, which corrects for differential hydration and urin-
ary concentration among animals, and reported as ng E2/mg
creatinine and ng E2/ml urine respectively.

Statistical analyses

All analyses were performed using the R software environ-
ment (R Core Team, 2017), with a comparison-wise error rate
of a< 0.05 for all tests. Differences among treatments in
Experiments 1 and 2 were analysed by univariate analysis of
variance (ANOVA) for each tissue, using false discovery rate
adjustments to correct for the number of tissues (Benjamini
& Hochberg, 1995). Significant effects in ANOVA were fol-
lowed by pair-wise Newman–Keuls multiple comparisons.
Differences between urinary E2 concentrations of animals in
Experiment 3 were analysed by factorial ANOVA comparing
the effects of treatment and collection time-point (repeated
measures), followed by Newman–Keuls multiple comparisons
at each time-point.

Results

Experiment 1: measurement of 14C-BPA in mice
given BPS

Pre-treatment with BPS elevated concentrations of 14C-BPA in
blood serum and certain tissues of females (Figure 1) and
males (Figure 2). Concentrations of 14C-BPA in the liver and
kidney are reported in Table 2 and tissue/serum concentra-
tion ratios are reported in Supplemental Table S1.
Comparisons were made among the four treatments for each
of nine tissues in females. ANOVA using false discovery rate
adjustment produced significant effects of treatment for the

542 T. POLLOCK ET AL.

https://doi.org/10.1080/00498254.2018.1480818


uterus, F(3,24)¼ 9.25, p¼ .003, and serum, F(3,24)¼ 6.24,
p¼ .012. Multiple comparisons revealed that the vehicle
treatment differed from the 3 and 9mg treatments for the
uterus, as well as the 9mg treatment for serum. Comparisons
were made among the four treatments for each of eleven tis-
sues in males. ANOVA using false discovery rate adjustment
produced significant effects of treatment for the heart, F(3,
24)¼ 5.83, p¼ .014; VC glands, F(3,24)¼ 6.34, p¼ .014; and
serum, F(3,24)¼ 6.24, p¼ .014. Multiple comparisons revealed
that the vehicle treatment differed from the 9mg treatment
for the heart, VC glands, and serum.

Experiment 2: measurement of 3H-E2 in mice given BPS

Pre-treatment with BPS reduced concentrations of 3H-E2
in females (Figure 3). Concentrations of 3H-E2 in the liver

and kidney are reported in Table 3 and tissue/serum concen-
tration ratios are reported in Supplemental Table S2.
Comparisons among the four treatments for each of nine

Figure 2. Mean (þSE) concentration of 14C-BPA in the heart, lung, muscle, adipose, testes, epididymides, VC glands, preputial glands, and serum of males in
Experiment 1. Animals received sc injection of 0 (vehicle), 1, 3, or 9mg BPS followed by dietary administration of 50 mg/kg 14C-BPA (n¼ 7 per dose). Significant dif-
ference from vehicle treatment in the same tissue: ��p< .01.

Table 2. Mean (± SE) concentration of 14C-BPA in the liver and kidney of dio-
estrous females and males following sc injection of 0 (vehicle), 1, 3, or 9mg
BPS and subsequent dietary administration of 50 mg/kg 14C-BPA in
Experiment 1.

BPS dose (mg) Liver (ng BPA/g) Kidney (ng BPA/g)

Experiment 1
Females Vehicle 37.3 ± 7.2 19.8 ± 3.1

1 40.7 ± 7.8 21.5 ± 2.9
3 48.3 ± 5.6 35.8 ± 5.8
9 53.9 ± 10.3 33.3 ± 4.5

Males Vehicle 47.7 ± 6.2 97.1 ± 10.7
1 57.0 ± 10.7 98.0 ± 22.9
3 50.3 ± 8.5 93.5 ± 10.3
9 56.9 ± 13.4 114.3 ± 29.6

Figure 1. Mean (þSE) concentration of 14C-BPA in the heart, lung, muscle, adipose, uterus, ovaries, and serum of dioestrous females in Experiment 1. Animals
received sc injection of 0 (vehicle), 1, 3, or 9mg BPS followed by dietary administration of 50 mg/kg 14C-BPA (n¼ 7 per dose). Significant difference from vehicle
treatment in the same tissue: �p< .05; ��p< .01; þ p< .001
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tissues in females showed a significant effect of treatment for
serum, F(3,24)¼ 7.86, p¼ .007. Multiple comparisons revealed
that the vehicle treatment differed from the 3 and 9mg
treatments for serum. Reduced 3H-E2 concentrations were
noted in most peripheral tissues of females given 3 or 9mg
BPS, although these measures did not reach statistical signifi-
cance. Comparable trends were also observed in males
(Figure 4); however, comparisons among the four treatments
for each of 11 tissues in males showed no statistically signifi-
cant differences.

Experiment 3: measurement of urinary E2 in mice
given BPS

Concentrations of E2 are reported for creatinine-adjusted
(ng E2/mg creatinine) and unadjusted (ng E2/ml urine)
measures. In females (Figure 5), ANOVA showed a significant
main effect of collection time-point on adjusted measures,
F(5,65)¼ 3.54, p¼ .007, and on unadjusted measures,
F(5,65)¼ 8.89, p< .001. Multiple comparisons revealed
that females receiving vehicle differed from those receiving 1
or 3mg BPS at 10 h after injection for adjusted and
unadjusted measures. In males (Figure 6), ANOVA showed a
significant main effect of collection time-point on adjusted
measures, F(5,20)¼ 5.08, p¼ .004, and on unadjusted
measures, F(5,20)¼ 5.62, p¼ .002. For unadjusted measures,

there was also a significant main effect of treatment,
F(2,4)¼ 9.96, p¼ .028, and a significant interaction,
F(10,20)¼ 2.94, p¼ .019. Multiple comparisons revealed that
males receiving vehicle differed from those receiving 1 or
3mg BPS at 10 h after injection for adjusted and unadjusted
measures. Multiple comparisons also showed that males
receiving 3mg BPS differed from those receiving vehicle
or 1mg BPS at 4 h after injection for adjusted and
unadjusted measures.

Discussion

To the best of our knowledge, these data are the first to
demonstrate in vivo interaction between BPS and BPA. When
animals were given a dietary supplement containing 14C-BPA,
pre-treatment with 9mg BPS increased radioactivity in the
blood serum of female and male mice. Pre-treatment with
9mg BPS also elevated radioactivity in the heart and VC
glands of males, while 3mg BPS was sufficient to increase
radioactivity in the uterus of females. Such tissues contain
moderate-to-high oestrogen receptor (ER) expression (Couse
et al., 1997; Kuiper et al., 1997). Consistent with previous
studies measuring the distribution of BPA (Kim et al., 2004;
Kurebayashi et al., 2005; Pollock & deCatanzaro, 2014), con-
centrations of 14C-BPA were highest in the liver and kidney;
these organs are involved in metabolism and excretion and
may not necessarily reflect tissue deposition or receptor
interaction. Tissue/serum concentration ratios for 14C-BPA
were similar to those previously reported in female rats
administered 100 mg/kg BPA via oral gavage (Doerge
et al., 2011).

The findings of Experiment 1 are consistent with previous
studies of the effects of triclosan, TBBPA, BP, PP, or DEHP on
distribution of 14C-BPA (Borman et al., 2017; Pollock et al.,
2014, 2017a,b). Elevation of 14C-BPA concentrations by BPS is
most likely due to competition among these chemicals for
access to metabolic enzymes. Bisphenols are largely detoxi-
fied by phase II conjugative enzymes, including UGT
and SULT (Hanioka et al., 2008; Pritchett et al., 2002;

Figure 3. Mean (þSE) concentration of 3H-E2 in the heart, lung, muscle, adipose, uterus, ovaries, and serum of dioestrous females in Experiment 2. Animals
received sc injection of 0 (vehicle), 1, 3, or 9mg BPS followed by dietary administration of 5 mCi 3H-E2 (n¼ 7 per dose). Significant difference from vehicle treatment
in the same tissue: ��p< .01.

Table 3. Mean (± SE) concentration of 3H-E2 in the liver and kidney of dioes-
trous females and males following sc injection of 0 (vehicle), 1, 3, or 9mg BPS
and subsequent dietary administration of 5 mCi 3H-E2 in Experiment 2.

BPS dose (mg) Liver (ng E2/g) Kidney (ng E2/g)

Experiment 2
Females Vehicle 0.49 ± 0.04 0.15 ± 0.01

1 0.44 ± 0.08 0.18 ± 0.05
3 0.31 ± 0.03 0.11 ± 0.02
9 0.27 ± 0.04 0.09 ± 0.02

Males Vehicle 0.53 ± 0.03 0.14 ± 0.01
1 0.48 ± 0.07 0.17 ± 0.02
3 0.62 ± 0.12 0.15 ± 0.03
9 0.50 ± 0.06 0.15 ± 0.02
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Figure 4. Mean (þSE) concentration of 3H-E2 in the heart, lung, muscle, adipose, testes, epididymides, VC glands, preputial glands, and serum of males in
Experiment 2. Animals received sc injection of 0 (vehicle), 1, 3, or 9mg BPS followed by dietary administration of 5 mCi 3H-E2 (n¼ 7 per dose).

Figure 5. Mean (þSE) concentration of urinary E2, expressed as ng E2/ml urine and ng E2/mg creatinine, of dioestrous females in Experiment 3. Animals received
sc injection of 0 (vehicle), 1, or 3mg BPS (n¼ 10 per dose). Significant difference from all other treatments at the same time-point: �p< .05; ��p< .01.

Figure 6. Mean (þSE) concentration of urinary E2, expressed as ng E2/ml urine and ng E2/mg creatinine, of males in Experiment 3. Animals received sc injection of
0 (vehicle), 1, or 3mg BPS (n¼ 10 per dose). Significant difference from all other treatments at the same time-point: �p< .05; ��p< .01.
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Skledar et al., 2016; Zalko et al., 2002). Resulting from inter-
action with UGT, the monoglucuronide conjugate is a major
metabolite of BPS (Skledar et al., 2016) and BPA (Hanioka
et al., 2008; Kurebayashi et al., 2010). Other BPA metabolites,
and presumably also BPS metabolites given structural similar-
ities between the two substances, include the monosulphate
conjugate produced by SULT (Yalcin et al., 2016), and various
sulphate/glucuronide diconjugates (Inoue et al., 2016; Yalcin
et al., 2016).

Concentrations of exogenous 3H-E2 were reduced in
blood serum, and to a lesser degree in tissues, by pre-treat-
ment with BPS. These findings contrast with those previously
observed for triclosan, which elevated exogenous 3H-E2 con-
centrations in tissues and blood serum of female mice
(Pollock et al., 2016). Whereas triclosan is a highly potent
inhibitor of oestrogen sulphonation by SULT (James et al.,
2010, 2015; Wang et al., 2004), bisphenols are weaker sub-
strates of SULT (Yalcin et al., 2016). Thus, the findings of
Experiment 2 are not well explained by competition between
BPS and E2 for access to metabolic enzymes. Rather, reduc-
tion of 3H-E2 in serum could be due to competition with BPS
for access to carrier proteins. Given that endogenous E2 is
lipophilic, a large fraction exists as a complex with sex hor-
mone-binding proteins, such as globulin and albumin
(Hammond 1990, 1995). Certain xeno-oestrogens, including
BPA and BPS, can similarly interact with sex hormone-binding
proteins (D�echaud et al., 1999; Wang et al., 2014; Xie et al.,
2010) and displace E2 in vitro (D�echaud et al., 1999). Impacts
of BPS on exogenous 3H-E2 uptake into circulation may be
relevant to human oestrogen supplementation, albeit with
certain caveats. Whereas we gave E2 in a dietary supplement,
human oestrogen supplementation usually involves E2 deriv-
atives such as ethinyl oestradiol administered via an oral pill,
vaginal ring, or transdermal patch (van den Heuvel et al.,
2005). Nevertheless, modulation of exogenous oestrogen
concentrations and actions by BPS could disrupt human oes-
trogen supplementation and warrants further study.

Concentrations of natural E2 in urine were also modulated
by exposure to BPS. Urinary E2 generally reflects systemic
oestrogen trends, and it has advantages over blood measures
because urine can be collected non-invasively at multiple
time-points (deCatanzaro et al., 2003, 2004; Muir et al., 2001;
Thorpe et al., 2014). Urinary E2 was elevated by BPS at 4 h
after injection in males, but reduced at 10 h after injection in
females and males. The discrepancy in E2 modulation at 4 h
and 10 h could be explained, at least in part, by differential
effects on oestrogen production via aromatase (CYP19A). BPA
can stimulate aromatase activity in JEG-3 cells following
short-term exposure (between 10min and 2 h), while longer
exposures (up to 18 h) inhibit aromatase activity (Nativelle-
Serpentini et al., 2003). BPS has also been previously shown
to increase aromatase expression in zebrafish (Ji et al., 2013),
thereby reducing testosterone concentrations and elevating
E2 concentrations (Ji et al., 2013; Naderi et al., 2014). Another
potential mechanism of urinary E2 modulation by BPS
involves hormonal regulation of renal function. Oestrogens
regulate expression of various transporters involved in renal
tubular uptake of substrates from circulation, including
organic anion transporters (OAT), organic cation transporters

(OCT), and organic anion-transporting polypeptide (OATP)
(Cheng & Klaassen, 2009; Ljubojevi�c et al., 2004). Substrates
of these transporters include endogenous steroid hormones,
as well as exogenous pharmaceuticals and xenobiotics (Roth
et al., 2012). In the US population, reduced glomerular filtra-
tion rate through the kidney was associated with lower con-
centrations of urinary xeno-oestrogens, such as triclosan and
BPA (You et al., 2010). In the context of our findings, oestro-
genic actions of BPS in the kidney could modulate excretion
of E2 in urine.

Concentrations of biologically active oestrogens in circula-
tion and tissues are tightly regulated by actions of several
enzymes (Dumas & Diorio, 2011). Generally, E2 plays critical
roles in reproduction, including sexual differentiation, repro-
ductive organ development, sexual behaviour and receptivity,
and oestrous/menstrual cycling (Alonso & Rosenfield, 2002;
deCatanzaro, 2015). Increased E2 can lead to pregnancy fail-
ure by disrupting intrauterine blastocyst implantation in mice
and other mammals (deCatanzaro, 2015; Gidley-Baird et al.,
1986; Ma et al., 2003; Thorpe et al., 2013). Heightened oestro-
gen actions from hormone-replacement therapy are associ-
ated with increased risk of hormone-dependent cancers
(Million Women Study Collaborators, 2003, 2005, 2007).
Elevated maternal serum E2 in the first trimester is also asso-
ciated with low birth weight in humans (Hu et al., 2014).

The doses of BPS administered in the present studies are
much greater than typical exposures in the general public.
Whereas we administered a single dose of 1–9mg BPS (corre-
sponding to around 22–330mg/kg), human exposures are
likely several orders of magnitude lower (Chen et al., 2016;
Liao et al., 2012a). Based on BPS output in urine, one study
(Chen et al., 2016) estimates that mean exposure levels range
from 0.001 to 0.115 mg/kg/d across several countries. We
have previously shown that BPA concentrations are elevated
by a single administration of triclosan, TBBPA, BP, PP, or
DEHP (Borman et al., 2017; Pollock et al., 2014, 2017a,
2017b). Concurrent exposure to a mixture of all five of these
chemicals at doses as low as 0.1mg can significantly elevate
concentrations of BPA in tissues and E2 in urine (Pollock
et al., 2018). Thus, BPS could have similar effects at much
lower doses when studied in combination with other EDCs.
Furthermore, we only investigated the capacity of BPS to
modulate concentrations of BPA and E2 acutely via one
exposure route. Future studies should explore impacts of
repeated administrations over several days and via other
routes of exposure.

BPA is an EDC with known oestrogenic properties
(Rochester, 2013; Seachrist et al., 2016; Ziv-Gal & Flaws,
2016), and BPS shows similar mechanisms of action and
potencies (Rochester & Bolden, 2015). BPS can bind to ER
(Mansouri et al., 2016; Rochester & Bolden, 2015; Rosenmai
et al., 2014; Yamasaki et al., 2004), and can also produce an
oestrogenic response in a rat uterotrophic assay (Yamasaki
et al., 2004). Concurrent exposure to BPA and BPS could
become even more harmful to human health as manufac-
turers continue to substitute BPA with bisphenol analogues
in consumer products. Further assessment of interaction
between BPA and BPS is necessary to ensure that replace-
ment of BPA with BPS is not a case of regrettable
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substitution, whereby the new substance is similar or even
worse than the substance(s) that it was designed to replace.
Our findings of the interaction between BPA and BPS high-
light the importance of studies of multiple toxicants, which
should be emphasised when conducting human health risk
assessments and determining regulatory exposure limits.
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